3 research outputs found

    The Difficulty of Approximating the Chromatic Number for Random Composite Graphs

    Get PDF
    Combinatorial Optimization is an important class of techniques for solving Combinatorial Problems. Many practical problems are Combinatorial Problems, such as the Traveling Salesman Problem (TSP) and Composite Graph Coloring Problem (CGCP). Unfortunately, both of these problems are NP-complete and it is not known if efficient algorithms exist to solve these problems. Even approximation with guaranteed results can be just as difficult. Recently, many generalized search techniques have been developed to improve upon the solutions found by the heuristic algorithms. This paper presents results for CGCP. In particular, exact and heuristic algorithms are presented and analyzed. This study is made, to show empirically that CGCP cannot provide guarantees on the approximation using these heuristic methods. In addition, an improvement is presented on the interchange method by Clementson and Elphick that is used with vertex sequential algorithms. This improvement allows graphs of up to 1000 vertices to be colored in considerably less time than previous studies. The study also shows that CDSaturl heuristic does not compete as well with CDSatur as expected for large graphs with edge density of 0.2. Several NP-completeness theorems are presented and proved. Approximation of CGCP is shown to be as difficult as finding exact solutions if we expect the approximate solutions to fall within a specified bound. These bounds on approximate solutions are shown to be directly related to the bounds that have been proved to exist for the Standard Graph Coloring Problem (SGCP). Finally, a model of CGCP is developed so that the Tabu Search technique can be applied. Several neighborhoods are developed and tested on 50 and 100 vertex graphs. Timing and performance is analyzed against the heuristics in the previous study. Instances of larger order graphs are used to test the best neighborhood searches with Tabu Search

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be ∌24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with ÎŽ<+34.5∘\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r∌27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie
    corecore